eSSPU logo
  • Українська
  • English
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
eSSPU logo
  • Фонди та зібрання
  • Пошук за критеріями
  • Українська
  • English
  • Увійти
    Новий користувач? Зареєструйтесь.Забули пароль?
  1. Головна
  2. Переглянути за автором

Перегляд за Автор "Mishchenko I. V."

Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
  • Документ
    Диференціальні рівняння першого порядку як математичні моделі реальної дійсності
    (СумДПУ імені А. С. Макаренка, 2019) Мартиненко Олена Вікторівна; Martynenko Olena Viktorivna; Міщенко І. В.; Mishchenko I. V.
    У статті розглянуто прикладне значення теорії диференціальних рівнянь першого порядку, зокрема, описано математичні моделі для розв’язування задач з хімії, фізики, екології та економічної моделі Еванса встановлення рівноважної ціни; показано важливість вивчення даної теми студентами фізико-математичних спеціальностей у вищих навчальних закладах та учнями, які цікавляться природничими та математичними науками. Диференціальні рівняння та їх системи є досить важливими при дослідженні хімічних процесів. При їх аналізі у хімічних системах завжди виходять з того, що кожен довільний процес здійснюється завдяки певній рушійній силі. Так, для дифузії рушійною силою є градієнт концентрації, конвекції – градієнт густини, потоку тепла – градієнт температури тощо. Тож, об’єктивний аналіз даних процесів можливий тільки при застосуванні диференціальних рівнянь, оскільки поняття градієнту тісно пов’язане з поняттям похідної. Ще одна галузь, яка використовує здобутки теорії диференціальних рівнянь для свого розвитку та вдосконалення є екологія. Як основний об’єкт її дослідження розглядають еволюцію популяції живих організмів. Опишемо диференціальні моделі популяцій, які пов’язані з розмноженням чи їх вимиранням, а також із співіснуванням різних видів тварин у випадках «хижак – жертва». Але окрім розглянутих вище природничих наук, дана теорія має досить широке застосування і в інших галузях. Наприклад, для економіки, де неможливе будь-яке експериментування, завдяки застосуванню потужного математичного апарату математичне моделювання є найефективнішим методом для дослідження. Прикладами економічних моделей є моделі споживчого вибору, моделі економічного зростання, моделі рівноваги на товарних, факторних і фінансових ринках тощо.

Програмне забезпечення DSpace та СумДПУ імені А.С. Макаренка copyright © 2002-2025 LYRASIS

  • Налаштування куків
  • Політика приватності
  • Надіслати відгук